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ON THE STABILITY OF RELAXED 
INCOMPLETE LU FACTORIZATIONS 

A. M. BRUASET, A. TVEITO, AND R. WINTHER 

ABSTRACT. When solving large linear systems of equations arising from the 
discretization of elliptic boundary value problems, a combination of iterative 
methods and preconditioners based on incomplete LU factorizations is fre- 
quently used. Given a model problem with variable coefficients, we investigate 
a class of incomplete LU factorizations depending on a relaxation parameter. 
We show that the associated preconditioner and the factorization itself both 
are numerically stable. The theoretical results are complemented by numerical 
experiments. 

1. INTRODUCTION 

Using a finite element method or a finite difference method to discretize a 
selfadjoint linear elliptic boundary value problem of second order, one obtains 
a system of linear equations. In this paper we concentrate on a system arising 
from discretizing a variable-coefficient elliptic equation, 

-V. (K(x, y)Vu(x, y)) = f(x, y), 

defined on the unit square Q with Dirichlet boundary conditions u(x, y) = 

g(x, y) on OQ. We require K(x, y) to be a bounded and sufficiently smooth 
function taking on strictly positive values. The associated discrete system is of 
the form 

(1.1) Ax = b, 

where A E R n"n and x, b E Rn . The sparse matrix A is symmetric and 
positive definite. 

Systems like (1.1) are often solved by a preconditioned iterative method such 
as the Preconditioned Conjugate Gradient method (PCG), cf. Axelsson and 
Barker [1]. That is, instead of solving (1.1) explicitly, we solve the equivalent 
system 

(1.2) M-IAx = M-lb, 
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where M E R' n is symmetric and positive definite. Here the coefficient ma- 
trix M- A is symmetric and positive definite with respect to the inner product 
(x, Y)M given by x My. If M is a suitable approximation to A, it will be con- 
siderably more efficient to solve (1.2) than solving ( 1.1). In fact, PCG converges 
to a relative error e in energy norm IIXIIA = (xTAx)1/2 in at most 

k = int [{K(M-A)}/2n- + 1] 

iterations, where K(M IA) is the spectral condition number of M IA. This 
implies that PCG needs fewer iterations than the ordinary conjugate gradient 
method if K(M1 A) is sufficiently less than K(A) . 

When deciding on which M to use, several issues must be considered, of 
which the most important are resemblance between M and A, cost of com- 
puting M, cost of storing M and cost of solving systems of the form My = w. 
The last requirement is justified by observing that My = w has to be solved 
once for each conjugate gradient iteration. It is therefore reasonable to demand 
that these systems can be solved in Y(n) arithmetic operations, a requirement 
that is met by the class of preconditioners described below. 

There exists a large collection of different preconditioners. However, we will 
concentrate on preconditioners based on incomplete LU factorizations of A. 
This concept was introduced by Meijerink and van der Vorst [1 1] in 1977. They 
suggested a method called Incomplete Cholesky (IC) factorization. Their idea 
is to use M = LU as a preconditioner, where LU is an approximate LU fac- 
torization of A. Put another way, A = LU - R, where L and U are lower and 
upper triangular matrices, respectively, and diag(L) = I. The factors L and U 
are computed by naive Gaussian elimination, except that fill-in generated during 
the elimination process is left out. Just like a complete LU factorization de- 
fined by Gaussian elimination, an incomplete factorization exists if the entries 
of the main diagonal are nonzero after every step of the elimination process, 
i.e., U has nonzero diagonal entries. Meijerink and van der Vorst [11] prove 
that the IC factorization exists if A is an M-matrix. This type of matrix is 
often generated, e.g. by discretization of linear elliptic and parabolic differen- 
tial equations. In 1978 Gustafsson [8, 9, 10] suggested a generalization of the 
factorization presented by Dupont et al. [6]. Gustafsson's method can also be 
considered as a modification to the IC factorization. Instead of omitting the 
fill-in, these values are added to the entries of the main diagonal. This factoriza- 
tion, called a Modified Incomplete Cholesky (MIC) factorization, exists if A is 
strictly diagonally dominant. When constructing a preconditioner based on an 
incomplete factorization, only little knowledge of the original boundary value 
problem is required. This leads to simple algorithms, at least when compared to 
more complex methods like, for instance, domain decomposition, cf. Bj0rstad 
and Widlund [4] and Bramble et al. [5]. However, in some cases such complex 
preconditioners have proved to be more efficient. 
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Both IC and MIC factorizations lead to quite effective preconditioners. Dis- 
cretization of an elliptic partial differential equation of second order on a uni- 
form q x q grid will give a coefficient matrix A whose condition number is 
(&(q 2). It is known that MIC preconditioners reduce the condition number to 
6(q). For a proof we refer to Axelsson and Barker [1, pp. 337ff]. 

In 1986 Axelsson and Lindskog [2, 3] presented a new class of modified 
incomplete factorizations called Relaxed Incomplete Cholesky (RIC) factoriza- 
tions. They pursue the idea of adding the errors that are accruing when fill-in 
is not permitted to the diagonal entries, but they multiply these values by a re- 
laxation parameter cl E [0, 1]. Choosing cl = 0 reduces the method to the IC 
factorization, while the choice cl = 1 leads to the MIC factorization. Accord- 
ing to Axelsson and Lindskog, the RIC factorization exists for cl < 1 if A is 
an M-matrix. In the case of cl = 1 , a sufficient condition for existence is given 
by Gustafsson's analysis of MIC factorizations, i.e., that A be strictly diago- 
nally dominant. We refer to the article by Axelsson and Lindskog [2] regarding 
details of the general RIC algorithm. 

Numerical experiments indicate that preconditioners obtained from incom- 
plete LU factorizations combined with iterative methods usually constitute an 
effective class of methods for solving systems like (1. 1). However, stability anal- 
ysis of these preconditioners is needed in order to decide when to apply such 
methods. Under these circumstances the term "stability" refers to two distinct 
topics: First, whether the factorization, i.e., the preconditioner M, can be com- 
puted without introducing large errors. Second, whether the computed solution 
of the system My = w is close to the exact solution and has not been corrupted 
by numerical errors. These problems have been investigated by Elman [7], who 
focuses on IC and MIC preconditioners for a nonsymmetric linear system de- 
rived from an elliptic model problem with constant coefficients. He concludes 
that "the performance of incomplete factorizations is sensitive to both the val- 
ues of the coefficients of the elliptic operator and the choice of difference scheme 
used to discretize the problem". However, his analysis apparently shows that 
the IC and MIC factorizations are stable and can be used as preconditioners if 
the mesh size is sufficiently small. In practice, the choice of mesh size will be 
affected by accuracy considerations and by the sizes of the constant coefficients. 

The purpose of this paper is to continue the stability analysis of the RIC fac- 
torization. The properties of the condition number K(M1 A) will not be dis- 
cussed. Inspired by Elman's work [7], we analyze a model problem with variable 
coefficients. Applying a particular difference scheme, the corresponding system 
of equations will be symmetric. We show that the RIC factorization exists ac- 
cording to a definition involving stricter requirements than the one mentioned 
earlier. This result assures a trouble-free computation of the factorization. Us- 

2 ing M = LU as a preconditioner, we show in fact that K. (M) = '(q ), where 
Ko,(M) is the condition number with respect to the 1?? norm; i.e., the condi- 
tion number of M behaves like the condition number of the elliptic difference 
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operator A. Since the model problem studied by Elman can be converted to a 
symmetric form, our analysis shows that preconditioners based on incomplete 
factorizations can be used even for this problem if a sufficiently small mesh size 
is applied. This result seems to be in agreement with Elman's analysis as well. 

2. THE MODEL PROBLEM 

As mentioned earlier, we consider an elliptic boundary value problem 

(2.1) -V (K(x, y)Vu(x, y)) = f(x, y), (x, y) E Q, 
u(x, y) = g(x, y), (x, y) E OQ, 

where Q = QU0Q = [0, 1] x [0, 1] . Throughout this paper we require K(x, y) 
to have continuous first derivatives and to satisfy the inequalities 

O<Km<K(X, y)<KM V(xy)EQ, 

(2.2) +-K(x, y) + a K(x,y) <K' V(xy)e Q. 

where Km KM and K' are finite constants. 
We shall use a finite difference method to discretize (2.1) on a uniform q x q 

grid as illustrated by Figure 1. 

ij' h 

0,4 1,4 2,4 3,4 4,4 h 

F ~~~~~~~h 

1,3 2,3 3,3 4,3 

0 ,2 2,2 3,2 14,2 

0,1 +jj 2,1 3,1 4, 
L I----IJ 

0,0 1,0 2,0 3,0 4,0 

FIGURE 1. The grid for q = 3. We want to compute 
the numerical solution to (2.1) for all nodes inside the 
dashed box. The remaining nodes lie on the boundary 
on . 

A node denoted by (i, j) has coordinates (ih, jh), where h = I/(q + 1) 
is the mesh size. Denoting the finite difference approximation to u(ih, jh) by 
ui j and letting Kij = K(ih, jh) and f j = f(ih, jh), we use the following 
second-order differences: 

9 au Ki+ 1 /2, j (ui+ l, j - ui1 j)-Ki- 1/2, j (ui, j-U,_ 1, j) 
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These approximations give rise to a sparse linear system of equations of the 
form Ax = b of order n = q , where the vector x contains the unknowns 
uij 5 and where b contains contributions from the functions f and g in 
(2.1). The coefficient matrix is symmetric and has the form 

Yi, fl1,1 0 0 al I 0 ... 0 

fl1,1 Y2,1 f2,l1 

o f2, 51 2351 f33,1 0 

* * n3 1 aq~q-1 
(2.3) A= 

(2.3)o A= O. *. *. *. *. 0 

o *. *. a .a a .a 0 

flq-iq 

O ... 0 aq ql 0 .. 0 fl q-iq 
q Yqq 

We observe that only five diagonals have nonzero entries. After scaling the 
2 matrix and right-hand side by h , the matrix entries are given by 

a 
i , j =-K ij+ 1/2' 

(2.4) AI y = { i+1/25,I i 

Yi~= K 12 + 
i+K1125 

+ 
Kj-112 

+ Kj+?1/2 

The indices i and j vary from 1 to q. It is easily shown that A is an M- 
matrix. As explained in ? 1, this property guarantees the existence of a RIC 
factorization for all wo E [O, 1). 

Computing the RIC factorization of A, we allow fill-in generated by the elim- 
ination process only in the positions corresponding to the five nonzero diagonals 
of A. That is, the matrices L and U appearing in the incomplete factorization 
A = LU - R maintain the sparsity structure of A. Utilizing this property, we 
adapt the general RIC algorithm described by Axelsson and Lindskog [2] to our 
model problem. 

Algorithm 2.1. (RIC factorization of the model problem). Given a matrix A E 
Rn, n as in (2.3), and letting wO E [O, 1], the RIC factorization is defined by the 
following algorithm: 
C1 1 := Y 1 

for i:= 1 to q do 

Pi,1 := Yi 1 
for i := to q - 1 do 
begin 

for i 1 to q - 1 do 
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begin 

bij j:= fi,jlcisi 

Ci+l, j := Pi+l~ - bi j(f, j + aij) 
aij := ai,jlcisi 

Pi,j+l := Yi,j+l - aij(aji + cOfl3s) 
end 
bq j := flqj/cq j 

c11j+1 := P1 ij+ - bqj(flqj + Waqj) 

aqj :=aqj/Cqj 

Pqj+l := yqj+l - aq j(aqcq + (OlIqqj) 
end 
for i 1 to q - 1 do 
begin 

bijq q:= fliq/Cq 

ci+I q := Pi+lq - bi,qfliq 
end 

For our model problem, the factors L and U computed by Algorithm 2.1 
have the form 

1 0 ... ... ... ... .. 0 

bll I1 

O b2, 1 

(2.5) 0 . . . 

0 
0 ... 0 aqq-i 0 ... 0 bq-liq 1 

C11 fl 3, 0 ... 0 a,1 0 ... 0 

0 C2,1 fl2,1 *. . 

C3,1 fl31 0 

(2.6) U = 0 

0 

flq-l,q 
0 ... ... ... 0 Cq q 
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The subdiagonal entries of L not equal to zero are defined by 

aij = ai jlci, / =-Kij+121Ci, i 

(2.7) bii = f3ij/ci}= { _i+l/2,j/Ci j i q, 

for i, j = 1, 2,..., q. The nonzero superdiagonal entries of U, aicj and 
fl, j, are still given by (2.4), while the diagonal entries, ci j, are defined by the 
following recurrences developed from (2.4) and Algorithm 2.1: 

(2.8) c - 
i C1i j i= 1, 2, ...,q, 

where 

0, i=1; j=1,2,...,q, 

+ .Ki- 1/2,j(Kj_ 1/2, j + a)Ki_ ,,j+112) ' 

~~~~~~~~~i = -i2, 3, ... q; j =1, 2, q.... ,- 1, 

(2 9) ~~(Ki - I/ 2 j)2, i =2, 3, ..., q; j = q, 
(2.9) ((K 

i =21)2, ...,q; j3 1, 

W..=Ki, j- 112(Ki J-1/2 + (oKi+112,j-1)' 

yi,J i 1 ,2 ,..., q - 1 ; j = 2 , 3 ,..., q , 

(Ki j1/2)2, i=q; j=2,3,...,q. 

We know that the performance of a RIC factorization depends on the size 
of ci j for i, j = 1, 2, ... , q. Consequently, analyzing the factorization is a 
matter of examining these recurrences, a problem we will pursue in the following 
sections. 

3. STABILITY OF THE RIC FACTORIZATION 

Algorithm 2.1 describes how to calculate the RIC factorization of the system 
matrix A given by (2.3). We observe that the only critical points in this process 
are when we calculate the fractions ai j/ci j and f, j /ci j . Since A is an M- 
matrix, we are assured that ci j :A 0 when wt < 1, cf. Axelsson and Lindskog 
[2]. This implies that the factorization exists in a mathematical sense for such 
choices of co. However, from a numerical point of view this is not sufficient to 
obtain a stable algorithm. If ci j assumes a very small or very large value, the 
algorithm may break down due to overflow or underflow. These observations 
lead to the following definition of a stable factorization. 

Definition 3.1. The RIC factorization of the model problem described by Al- 
gorithm 2.1 is called a stable factorization if there exist two constants Cm, CM, 

O < Cm < CM < 00, independent of the mesh size h such that 

Cij E [Cm I CM], i, j = 1, 2, ... .,q. o 
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In the next section we will prove that the stability of the RIC factorization 
implies a suitable bound on the l condition number of the preconditioner 
M given by M = LU. In the rest of this section we are concerned with the 
stability of the RIC factorization. 

We are now able to show the following result. 

Theorem 3.2. Given a sufficiently small value of the mesh size h, there exists e E 
[0, 1), where e = &(h), such that the RIC factorization described by Algorithm 
2.1 is stable for (t E [O, 1 - e] . 

This theorem does not tell whether the factorization is stable when cl > 1 - . 
Since e = &(h), the upper limit of [0, 1 - e] will approach the value 1 as 
the number of nodes increases. We have failed to find a function K(x, y) 
which makes the algorithm break down for an wo > 1 - e. On the contrary, 
numerical experiments presented in ?5 indicate that the factorization is stable 
for all wt E [0, 1]. As far as we know, there have not been reported any 
problems when applying wt = 1, i.e., MIC factorization. 

In order to prove Theorem 3.2, we first show two intermediate results. First 
we consider a system of difference equations which are closely related to the 
formulas (2.8). The sequence generated by the new difference equations belong 
to a closed positive interval. By means of a simple substitution we transform 
the recurrences (2.8) and use the result of Lemma 3.3 to prove that ci j belongs 

to another closed positive interval IK. Choosing suitable values for cm and 
CM will prove Theorem 3.2. 

It is difficult to tell what values ci j can assume by analyzing the recurrences 
(2.8) directly, mainly because of the variable coefficients Oij and y/jj This 
motivates the introduction of another system of difference equations, 

(3.1) Zi 1=4- 'i' _ "' +c1ij, ij=1,2,...,q, 
i-1, j i, j-1 

where Iei jI <? 1. The coefficients Ci j and vi j are given by 

0, i I; j =I22, .... ,q; j1, 

cij 
j I 1+ t), i 2 ,3, ..,q; j 1, 2, ..... , q -1 

{ , i 23 q=2,3, .. ,q 
0 O, i I 2 ,.. q ; j =1 , 

vi j = 1+ctO i I 2, . ,q - 1; j 2, 3, ....... , q, 

t 

1, 
i=q ; j=2 ,3 ... ,q 

Lemma3.3. Suppose ti j = maxr I 8r s I for r = 1, 2, ..., i and s = 1, 2,..., 
j, c= w E [0, 1 ie], and let {Zf j}Z 1 be given by the difference equa- 
tions (3.1). Then 
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i *1 > > > > Fo Zk,1 to be computed 

i-1i i q k 

FIGURE 2. This figure shows how the next value to be 
computed depends on earlier values. 

Proof. The equations differ depending on the node (i, j) for which we calculate 
Zi j . Consequently, it is natural to organize the proof accordingly. 

We observe that 

ZI 1 = 4 +,, I E[4- tI 4 + *, 1] 

Thus, Z1 1 E II I . Choosing j = 1, we make the following hypothesis: 

ZklEIkl fork=1=21 ...2i-1<q. 

This leads to 

zi1 1 i ? 
< 4- 4+ +e1 < 4+e1i, 

i-lZ 1+ ? - 1 ) Zi l> 
4-i. ,1 +1 2-- 

- l>4 
j 

+( e e-i > 3-e-i I. 

By induction, Zi E Ii, for i = 1, 2, ..., q. Similarly, we can show that 

ZIi jIl j, j =1, 2,***., q. 
We want to show that Zij E Iij for i, j = 1, 2, ...,q. The values of 

Zi j are computed along the horizontal grid lines. Suppose Zk I E Ik / for k = 
1, 2, ... , q when / = 1, 2, ... , j- 1 < q, and also for k = 1, 2, .. , i- I < q 
when 1 = j (cf. Figure 2). Using our hypothesis, we get that 

Z <4_ 1 I +1 - 1<+4-e+I < 4+t 
i'-j, ?- z.1 Z C1 4 +~ 9 4 + t 1J 

and furthermore that 

Zij >41- + + _1+ 
i-l'j i'j-l 

Utilizing the definitions of ti j and e, we find the lower bound to be 

Z. >4 1+(1-e)_ 1+(1 ()_ >4-2 2-e - 

By induction we conclude that Zi j E Ii j for i, j = 1, 2, ... , q, thus proving 
the lemma. o 
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Knowing the range of values that Zi j can take on, we are able to decide 
which interval ci j belongs to. In order to complete this analysis, we rewrite the 
recurrences in a way that encourages the use of Lemma 3.3. This transformation 
consists of two parts. First, we find Taylor series expansions for the function 
K, and then we introduce a substitution which converts the recurrences to the 
form (3.1). 

By expanding the coefficient K in Taylor series about suitable nodes and 
using (2.9), we find that 

0 ,~ ~ ~ ~ 11 
[?,1K1~~ #ql, 

Oi~j= (1 + ()Ki_ 1, iKi, j+ (i, j, j~hq, 
Ki- ,jKi, j +(Di, s j=q, 

(3.2) J O+ 1= 1, 

Wij= (I + (t)Ki, j- IKi, i + vi , i s : q9 

1 Kij-lKisj +'iPj i = q, 

Yii = 4Kij + Fi1j , 

where (i4 , Vi j and Fi j have magnitude (9(h) (cf. the assumptions (2.2) 
on K). 

Lemma 3.4. Let {c1 }q '=1 be given by the recurrences (2.8). For a sufficiently 
small value of the mesh size h there exists e E [O, 1), where e = (h), such 
that 

ci E I' = [(2 - )Km , (4 + e)Km] , i, j = I1, 2, ... ., q 

for co E [O. 1 - e], where Km KM > 0 are given by (2.2). 
Proof. We organize the proof in the same way we organized the proof of Lemma 
3.3. We shall use the substitution 

(3.3) Xi = . 

Since 0 < Km < Ki j < KM, this substitution is well defined. By means of 
induction we are able to transform the recurrences (2.8) to the form (3.1). If 

K Xi j E Ii j = [2 - -i j, 4 + 9iji], ei j = 6(h) for all i, j, then ci j E Iili= 
[(2 - ti j)Km, (4 + ei j)KM] because 

(2 -ti j)Km <~ X, jKm < ci j < X, jKm < (44 + sij)Km. 
We observe that by expanding K into a Taylor series about the node (1,1) 

one obtains 
C1 I = 4K, 1 + ei, K, 1 

where e 11 = IF IK1 1 = (I(h) . Using the substitution (3.3), we get that 

xi= 4+ e, I 

This expression can be recognized as being the first term of a sequence of the 
form (3.1). As in Lemma 3.3, we define ei j = maxr s 1er sl for r = 1, 2 .-, i 
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and s = 1, 2, ..., j, where er 5 = (h) denotes the variable coefficients aris- 
ing from the substitution (3.3). It follows from Lemma 3.3 that X1i1 E II I 
which implies c 1 I K 

We want to show that c E IiK when i = 1 or j=1. We choose j =1 
and make the following hypothesis: 

Ck1 E k fork= 1, 2,5..., i- 1<q. 

From (2.8) we get 

i-i 1,1 

Expanding the function K in Taylor series about the nodes (i - 1, 1) and 
(i, 1) gives 

c 1=4K1 1 
I + 

(1+ +C)K1i K Ki+ I_ + K 
i-l,1 

where 

6i,1K~~~~~Di 

Since c11 1 e K substitu 
Since ci~l 1 li- 1' 9 has magnitude &(h). Introducing a local substitu- 
tion like (3.3), we get that 

Xi,I 4 - t + 1 + 

By induction and Lemma 3.3 it follows that Xi1 E Ii, 1 , which implies Ci 1 E 

IK for i = 1, 2, ..., q. We can analogously prove that c E I IK = 
1 , 2 ,...,q. 

We now want to show that c E IK - for i, j = 1, 2, ..., q - 1 . The values 
of C are computed along the horizontal grid lines. Assume that Ck E k 

for k = 1, 2, ..., q - 1 when 1 = 1, 2, ... , j - 1 < q - 1, and also for 

k = 1, 2, ..., i - I < q - 1 when 1 = j (cf. Figure 2). This leads to 

(1 + wo)K,_ _jKi j (1 + co)K1, jI Ki1 j+. K 

where 

eji = 
Kij ( s 'Ci-; j ci, j-- I 

From our hypothesis we get that e1 j = &(h), and a local substitution like (3.3) 
gives 

1,] =j- 
X 

Xi1 
+ 1, j 

From Lemma 3.3 we have that Xi j E Ii j, which implies c E I K for 
i , j = 1 ,2,... , q - 1 
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Using induction we can show in a manner analogous to the preceding argu- 
ments that c1 E I1 also when i = q or j = q. 

Defining e = 8q q we conclude from the preceding results that ci j E IK for 
i, j = 1, 2,..., q, which proves the lemma. o 

According to the proof of Lemma 3.4 all numbers in the sequence {Xi j 1=1 
defined by the substitution (3.3) belong to the interval [2 - e, 4 + e]. This re- 
sult is needed when analyzing the RIC preconditioner. For easy reference we 
formulate it as a corollary. 

Corollary 3.5. Define the sequence {Xi j q j=1 by the substitution (3.3). Let 
e = maxi j ei, jI, where cij = (h) is as described in the proof of Lemma 3.4, 
and let c E [0, 1 -ce]. Then 

Xi 'j E [2 -e, 4 +e], i, j= I1, 2,., q. 

We are now able to prove Theorem 3.2. 

Proof of Theorem 3.2. From Lemma 3.4 we have that cij E [(2 -ce)Km, 
(4 +ce)KM] for W E [0, 1 -c]. Choosing cm = Km and cM = 5KM, we 
get cij E [Cm, cM] C (0,O o) for i, j = 1, 2, ..., q, where cm and CM 
are constants independent of h. This assures that the RIC factorization de- 
scribed in Algorithm 2.1 is stable according to Definition 3.1, and Theorem 3.2 
is proved. E 

The following result is a special case of Theorem 3.2. 

Corollary 3.6. Assume the coefficient function K(x, y) to be constant, K(x, y) 
K > 0. Then the RIC factorization described in Algorithm 2.1 is stable for all 
Cl E [O, 1]. 

Proof. Since K(x, y) is a constant function, we get that cij = 0 in Lemma 
3.4 for i, j = 1, 2, ... , q. Then e = maxi j 1,ei jI = 0. This implies that the 
valid range for w in Lemmas 3.3 and 3.4 and Theorem 3.2 is cl E [0, 1]. 0 

4. ANALYSIS OF THE RIC PRECONDITIONER 

In the previous section we proved that the RIC factorization of the matrix 
A is stable in the sense of Definition 3.1 for all c E [0, 1 - M(h)]. Based 
on this strong stability result, we will in this section discuss the stability of the 
application of the RIC preconditioner. In order to utilize the results from ?3, 
we will throughout this section assume that the parameter w is chosen from 
the interval [0, 1 - e], where e = M(h) is as defined in the proof of Lemma 
3.4. 

We want to apply the PCG method to the linear system 

(4.1) Ax = h b, 
where A is defined by (2.3), and where the right-hand side and the boundary 
conditions of the differential equation (2.1) are incorporated in the vector b. 
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Within each iteration of the PCG method, linear systems of the form 

(4.2) My = r(i) 

where r(i) denotes the i th residual vector, have to be solved. The RIC pre- 
conditioning matrix M = LU is nonsingular since det(M) = det(L) det(U) = 

Hlq c1 j > 0. Let x(?) = 0 be the initial guess of the PCG method; then 

r(?) = h2b. Assuming convergence of the PCG method, it is reasonable to ex- 
pect that IIr(i) ll0o = &(h2) for all i . Consequently, we are concerned with linear 
systems of the form 

(4.3) My = h2i) 

where lr(i) 110 = 1(). 
For the matrix A, it is well known that IIA I =a (h 2), so that by (4.1) 

we have 
IlxII00 ' CIlbIIoo 

for a mesh-independent constant C. In a similar way, it is desirable to have 
1iM K100 = &(h ), since then by (4.3), we have IlyK = &(1). This will 
assure the stability of the process of solving (4.3). 

We have the following theorem. 

Theorem 4.1. For a sufficiently small value of the mesh size h there exists e E 
[0, 1), where e = &(h), such that the RIC preconditioner based on Algorithm 
2.1, using w E [0, 1 -ce], satisfies 

-2 
1IM-'111_ < Ch 

where the constant C is independent of h. 

In ?5 we will present an example which shows that the bound given by the 
theorem is sharp in general. 

We observe that Theorems 3.2 and 4.1 imply that Ko(M) = &(h 2). This 
follows since Theorem 3.2 implies that IIMIK ? IILIKIIllUIKo1 < C, where C 
is independent of h. Hence the 1?? condition number of M is of the same 
order of magnitude as the 1? condition number of A. 

Proof of Theorem 4.1. Solving a system My LUy = w is equivalent to 
solving two triangular systems 

(4.4) Lv=w and Uy=v, 

where L and U are given by (2.5) and (2.6). These systems are easily solved 
by forward and backward substitution, respectively. 

Letting v (v1 1 , V2,1, ... , Vqsq)T, W = (W1 ,1 W2,1 Wq.q) 
T and y 

(Y3, 1 Y21, ' I yq, q)T, we rewrite the triangular systems as two inhomoge- 
neous linear difference equations 

(4.5) aij-vij- + bi jvil Ij + Vij = wij 
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(4.6) ci jy1 +i jyi+I , + = vi, j 

where i, j = 1, 2, ..., q and vi10 = vOJ = Yiq+1 = Yq+1,j = 0. Instead of 
analyzing the systems (4.4) directly, we concentrate on these equations. 

First, we examine equation (4.5), i.e., the lower triangular system. Applying 
the triangle inequality to (4.5), we find that 

Ivij1 = 1wij - ai 1j1vi - bi11 v.jvi- 
<? wij, + aiij_ IIvijII + bi, jvhli , jI. 

Expressing the coefficients ai j- , and bi_ 1 j in terms of (2.7), we get 

'v~11 ? w1,1i, + K1 l/2 Ki- 1/2 1v1 ,I I ii< wij j+ Ci J vi j_1|-+ c 1/,/Vi-l j1 
i j-1 i-1 j 

We expand the function K into Taylor series about the nodes (i, j - 1) and 
(i- 1, j), which gives 

Ki j-1/2+Ki-1/2 - Ki-I+Ks_1 j + 
ci, j I Ci 1, j ci, j-I Ci- 1 j 

where 

ij= 2 C )-1 + j (i )2 

Let J = maxi j 0iI jI and 4 = e + J = Xh . The size e = &(h) is as described 
in the proof of Lemma 3.4, and 4 is a nonnegative constant. We formulate the 
following hypothesis: 

IV,, Il <: (I + 4)'+'(k + 1) Jwjjc 

for k =O, 1, ...,q when I = O, 1, ..., j - 1 < q, and also for k= 
0, 1, ..., i - 1 < q when I = j (cf. Figure 2). It is evident that this hypothesis 
isvalidwhen k= 0or 1=0 since vkO =v O = 0 for k,l=0, 1,...,q. 
Assuming that the hypothesis holds, we examine the next entry to be computed, 

V , i ( jsj C_ 

IV ( + (Kc1....1 + J) (1 + J ( (i+ j- 1) IIwI 

Using the substitution (3.3) from the proof of Lemma 3.4, we find that 

Vi jl <[ + + X + i,) (1 + )i+j- (i+ j- 1)1 
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From Corollary 3.5 we know that Xi j E [2- e, 4 + e], which gives the inequal- 
ities 

'v1 ?j [1 + (21e +3) (1 +4)i+J '(j] 1)] liwiK 

< [+ +(1+ 2-e+ (1+ ) (+ -1] llo 

< (I + <:)i+j[(o + <:)'`ij + (i + j - l)]llwiloo 
< (I + 4)i+j(i +j)11w11O.- 

The last inequality holds because (1 + 4)1 i j < 1 for all i, j= O 1, ..., q 
except i = j = 0. However, we have already verified that the hypothesis 
is valid initially. By induction we have Ivijl < (1 + 4)'i+(i + j)jjwjj00 for 
ij=0, 1, ... , q, and then 

|Vi._j < e( i)(i + j)jjwK = e (i+j)l(q+ ) (i + j)w 11o 

< e 22qjjwjj. < 2e 2h-1lwHloo 

for i, j = 0, 1, ... , q. Hence, we have established the inequality 

(4.7) 11vJ100 < 2e2 h I1HwK10 , 

where the constant 4 > 0 is independent of the mesh size h, and v is any 
solution of equation (4.5). 

We turn to examining equation (4.6), i.e., the upper triangular system. Using 
the same strategy as above, except that the indices must be counted backwards, 
we find that 

(4.8) IIYII < 2e2Ch-1vIIl. 
The constant 1 > 0 is independent of h, and y is any solution of (4.6). 

Combining the preceding results, we draw the following conclusion. Assum- 
ing co E [O, 1 -e], we know from (4.7) and (4.8) that jjvjj. < CVh I1wl1j and 

IyIYIIO < Cyh_ 1 vjjoo, where C, = 2e24 and CY 2e26 . Thus, 

IIYII < Cyh-I(Cvh-1HjwjjoO) = Ch 21wKL. 

This assures that the RIC preconditioner has the desired property, JIM1 Ioc < 

Ch 2, and Theorem 4.1 is proved. o 

We remark that the result of Theorem 4.1 totally relies on the lower bound 
for ci j shown in ?3, ci, j > (2 - C)Km . 

5. NUMERICAL EXPERIMENTS 

In ?3 we showed that the RIC factorization given by Algorithm 2.1 is stable 
for co E [O, 1 - e], where e = &(h). This result follows from Lemma 3.4, 
which says that the diagonal entries of U, ci, j, belong~to the interval IK - 
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[(2 -ce)Km, (4 +e)KM] for co E [0, 1 -Ie], where Km = min(XY)E EK(x, y) 
and KM = max(X y)EU K(x, y) . Despite the fact that we are unable to show this 
property for co > 1 - c, experiments indicate that such parameter values can 
be used. Choosing co = 1, the RIC and MIC factorizations are identical. This 
type of incomplete factorization has been in practical use for several years and, 
as far as we know, no problems have been reported when applying this method 
with sufficiently small mesh size to systems similar to our model system. 

We will now factorize the matrix A given by (2.3) using five different func- 
tions K(x, y). They are 

(a) K (x , y) = 
I 

+ X2 + y2 

(b) K(x, y) = e-x-Y 

(5.l) (c) K(x, y) = sin(1O(x +y)) + 2, 

(d) K(x, y) = tan(xy) + 1, 

(e) K(x , y) = { , (,)E 0- 3, 3- X 3 S 3 

The functions labeled (a), (b), (c), and (d) satisfy the requirements on K formu- 
lated in ?2 (cf. (2.2)). However, the fifth function labeled (e), is discontinuous. 
We still use it in this experiment in order to show the importance of some 
smoothness condition on K. 

Applying the substitution from the proof of Lemma 3.4, 
ci, ' 

Xi 
K1, j 

we can decide whether c E K even for c = 1. This substitution shows that 

(5.2) Xi jKm < ci j < Xi JKM- 

We compute Xm = mini, jX j and XM = maxi, j X,, and check if these 
values belong to I, = [2 - c, 4 + e]. If they do, the inequality (5.2) shows that 

c E IK, which implies a stable factorization. Table 1 lists the values of Xm 
and XM for the five functions (5.1) using co = 1 and q = 10, 50, 80, 100. 

From this table we see that 2 - e < Xm < XM < 4 + e for the first four 
functions. In case (a), (b) and (d), Xm is greater than 2, while 2 - e < Xm < 2 
in case (c). This effect can probably be ascribed to K(x, y) oscillating rapidly. 
We also observe that Xm z 0.003 < 2 - e in case (e), which is due to the 
discontinuity of this function. The experiments indicate that the factorization 
is stable in terms of Definition 3.1, even for this choice of K, though the bound 
cm seems to be different from the bound obtained in the smooth case. 

In order to test the efficiency of the RIC preconditioner, we choose K(x, y) = 

e X Y. f(x, y)_ 1 and g(x, y) 0 in (2.1). This gives the following problem 

(5.3) -V (e XYVu(x, y)) = 1, (x, y) EQ, 
(5.3 ) u y ) 

0 (x, y A l\ 
O 
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TABLE 1 
Values of Xm and XM for the five functions (5.1), co = 1. 

q 10, h = 0.0909 q = 50, h = 0.0196 
Function Xm XM Xm XM 

a 2.1606 4.0081 2.0256 4.0004 
b 2.1672 4.0041 2.0283 4.0002 
c 1.7278 3.8753 1.9208 3.9969 
d 2.1740 4.0000 2.0332 4.0000 
e 0.0034 4.0000 0.0032 4.0000 

q =80,h =0.0123 q =100,h =0.0099 
Function Xm XM Xm XM 

a 2.0156 4.0002 2.0123 4.0001 
b 2.0173 4.0001 2.0138 4.0000 
c 1.9493 3.9992 1.9591 3.9996 
d 2.0205 4.0000 2.0163 4.0000 
e 0.0031 4.0000 0.0031 4.0000 

We discretize (5.3) for q = 15, 20, 25, 30 and get four corresponding systems 
of equations of the form Ax = b. These systems of order n = q2 are solved 
by the RIC preconditioned conjugate gradient method for different choices of 
w. We use the relative tolerance e = 10- 6 and the starting vector x(?) = 

T 
(1, 1, ..., 1)T . The number of iterations used in each case is shown in Table 
2. In the rightmost column we show the number of iterations needed when the 
systems are solved directly without any preconditioning. 

TABLE 2 
The number of iterations used by the RIC preconditioned conjugate 

gradient method when solving the test problem (5.3). 

co 0.0 0.5 0.9 1.0 Without 
q n (IC) (MIC) precond. 
15 225 14 13 11 10 54 
20 400 18 15 13 11 73 
25 625 21 18 14 12 92 
30 900 24 21 16 13 112 

First, we observe that the RIC preconditioner indeed improves the rate of 
convergence of the conjugate gradient method. As expected, the significance of 
preconditioning increases when n gets larger. Another observation is that the 
optimal choice of co seems to be a value close to 1.0. This property has also 



718 A. M. BRUASET, A. TVEITO, AND R. WINTHER 

been reported by Axelsson and Lindskog [2]. They suggest that the optimal co 
for this type of problem is coopt = 1 - 3opth, where 3opt > 0 is independent of 
the order n of the system. For further experiments we refer to their paper. 

TABLE 3 
Values of lxH 0 , where x solves (5.4), for some values of h. 

n h IIXII.jj 
100 0.0909 0.1155 
400 0.0476 0.1451 
900 0.0323 0.1613 

1600 0.0244 0.1718 
2500 0.0196 0.1793 
3600 0.0164 0.1851 
4900 0.0141 0.1897 
6400 0.0123 0.1935 

Finally, we present an example which shows that the bound JIM- 'II = 
6(h 2) given by Theorem 4.1 is sharp in general. We choose K- 1 and 
co = 1 (this example is covered by our theory, cf. Corollary 3.6) and solve 
systems of the form 

(5.4) Mx = h w 

for decreasing values of h. Here, w = (1, ... 1) TThe value of JlxJJK for 
each h is given in Table 3. We observe that JlxJJK increases slightly with h 
and seems to converge towards a finite value. Hence this experiment indicates 
that the bound of Theorem 4.1 is sharp. 
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